Tiered methane monitoring system for California
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Overview

Methane mitigation has emerged as a high priority for many sub-national entities
ranging from state governments to cities and facility operators.

Persistent observations of methane over large areas that are spatially and temporally
complete and high resolution can provide actionable information.

Prototype “tiered” methane monitoring system in California: combines atmospheric
methane observations from multiple techniques and vantage points, geospatially
resolved infrastructure data, machine learning, flux analysis, data fusion and data
portal to assess and communicate methane emissions ranging from key regions to
individual infrastructure elements.

Observational tiers include satellite observations spanning the state of California,
periodic statewide airborne remote sensing surveys of point sources, a regional
network of tower-based in situ sensors and a geostationary satellite testbed
overlooking the Los Angeles megacity.

Goal: improve relevance of methane observations by developing and validating point
source flux estimates, linking with multi-scale attribution data and flux estimates, and
coordinating with California stakeholders to infuse products into decision-making.



California GHG Emission Reduction Goals
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California GHG Monitoring Networks

Federation of networks: CARB, BA-
AQMD, JPL/Scripps/UCR, LBNL
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Near-continuous monitoring at 23 sites

Expand to at least 30 by 2020



Regional flux inversion: LA megacity

Sunshine Canyon (Landfill),
Natural Gas Storage Fields
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Comparison of the inversion posterior fluxes (for both the Aliso Canyon leak period and the non-
leak period) with 1-sigma uncertainties vs CALGEM for each of the five zones in the LA Megacity
Domain (LAMD). The impact on the basin-wide flux from the Aliso Canyon gas leak is readily
apparent. We attribute the large reduction in the posterior fluxes in Zone III to the shutdown of the

Puente Hills landfill in 2013.
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Statewide survey of point sources
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5 months of flights 2016-2018; repeat overflights of >272,000 facilities
and components; >1300 plumes; 562 sources Duren et al., in revision




@& Anomalous super-emitters at 0.2% of infrastructure
responsible 35-43% of California CH, inventory
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@ California & 4 Corners results suggest relationship
~ . .___ . mayhold for other key regions globally
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Tiered observing system in action:

landfill emissions mitigation
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Reduction in Sunshine Canyon CH4 emissions seen by both tiered-observing inversion & AVIRIS-NG
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New developments: automation & visualization

On demand services, workflow & UQ
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Summary

* Tiered observing systems offer the potential to combine
persistent, spatially complete monitoring over large areas
with point-source monitoring at facility scale

e Data sharing with facility operators can lead to voluntary
mitigation if the data is able to guide mitigation at
component levels

* Pilot efforts indicate potential to extend these methods
globally through coordinated surface monitoring networks,
periodic airborne remote-sensing surveys and/or satellite
observations and with multi-scale analysis systems



* backup



Methane Projects

Megacities Carbon Project (NIST/NASA): persistent, multi-scale GHG
monitoring for LA basin

Aliso Canyon incident response (NASA): AVIRIS-C and HyTES, discovery of
secondary plumes and oil well venting

California Methane Survey (CARB/CEC/NASA): baseline statewide survey of |
point-sources (responsive to AB1496, SB888)

ACCESS Methane Source Finder (NASA): automate workflow (point source
detection, attribution and flux estimation pipeline) + analytics/portal

CMS Prototype Methane Monitoring System for California (NASA): integrate
aircraft, surface, & satellite inversions and infrastructure data (reglonal to
point source scale)

(.un.adl Hills _".
- (MEWilson
- Q N
T4 |I\(~(h

Q 3
W “b’ .
Com pl(n .

Palos Verdes YL bvine S

Cal Methane Survey

Megacities Carbon Projé-c’g "

@an Clemente ba Jola
3

14



S Measuring CH, (and CO,) with SWIR Imaging

Spectroscopy

 Effort led by Andrew Thorpe and David R. Thompson (JPL)

* AVIRIS-NG has 5 nm spectral resolution (380-2510 nm) & typically 3 m
spatial resolution, 1.8 km swath (at 3km altitude)
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Figure 3. (a) AVIRIS-
image pixel within the CH4 plume used for the CHy4 retrieval (see
Figure 2b). (b) The residual is plotted with 1 o standard deviation
boundary calculated from residuals for the entire scene.
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Figure 7. (a) AVIRIS-NG measured and modeled radiance for one
image pixel within the CO2 plume for the CO- retrieval (see Figure
6b). (b) The residual is plotted with 1 o standard deviation bound-
ary calculated from residuals for the entire scene.

Thorpe et al., AMT, 2017; Thompson et al., GRL, 2016
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Emisssions (kgCH4/hr)
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Validating emission estimates with in-situ

RSN measurements
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Need frequent/persistent observations

Dairy

~30% mean persistence for most sectors
Duren et al., submitted
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